On Certain Classes of Meromorphic Functions

V. Srinivas ${ }^{1}$, S. Lalitha ${ }^{2}$, K.V. Sitavani ${ }^{3}$
${ }^{l}$ Dr. B.R. Ambedkar Open University, Hyderabad, Telangana
${ }^{2}$ Geethanjali College of Engineering and Technology, Hyderabad, Telangana
${ }^{3}$ Research Scholar, JNTUKakinada, Andhra Pradesh
Corresponding Author: S. Lalitha

Abstract

: A meromorphic function with a simple pole at $z=0$ and of the form $f(z)=\frac{1}{z}+\sum_{n=0}^{\infty} a_{n} z^{n}$ for $z \in D \equiv$ $\{z \in \mathbb{C}: 0<|z|<1\}$ with $f(z) \neq 0$ in D can be expressed as $\quad f(z)=\frac{1}{z g(z)}$ where $\quad g(z)=1+$ $\sum_{n=1}^{\infty} b_{n} z^{n}$ in D. In this paper certain coefficient criteria are derived for some classes of meromorphic

 functions.KEYWORDS:Meromorphic function, univalent starlike function.

INTRODUCTION

Let \widetilde{M} denote the class of functions which are analytic in $D=D(1)$ where
$D(r)=\{z \in \mathbb{C}: 0<|z|<r\}$ for $r>0$,
with a simple pole at the point $z=0$ and \mathbb{C} being the set of complex numbers. By M, we denote the class of functions $f \in \widetilde{M}$ of the form
$f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n}(z \in D)$ (1)
Also, by $\tau_{\eta}^{\varepsilon}(\eta \in R, \varepsilon \in\{0,1\})$, we denote the class of functions $f \in M$ of the form (1)
for which
$\arg \left(a_{n}\right)=\varepsilon \pi-(n+1) \eta \quad(n \in N \equiv\{1,2,3, \ldots\})$.
For $\eta=0, \varepsilon=0$ we obtain the class τ_{0}^{0} of functions with positive coefficients.
Motivated by Silverman[3], Djiok[1] defined the class

$$
\tau^{\varepsilon} \equiv \cup_{\eta \in R} \tau_{\eta}^{\varepsilon}
$$

It is called the class of functions with varying coefficients.
Let $\quad \alpha \in(0,1), \quad r \in(0,1)$. A function $f \in M$ is said to be meromorphically starlike of order α in $D(r)$ if

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)<-\alpha \quad(z \in D(r)) .(2)
$$

Djiok[1] introduced the class of all functions in M, which are meromorphically starlike of order α and denoted it by $M S^{*}(\alpha)$.
We set $\quad M S^{*}=M S^{*}(0)$.
For a function $f \in \tau_{\eta}^{0}$, the condition (2) is equivalent to

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}+1\right|<1-\alpha \quad(z \in D(r)) . \tag{3}
\end{equation*}
$$

Let us define a new class $\quad \operatorname{MS}^{*}(A, B)$ which generalizes $S^{*}(\alpha)$:
A function $f \in M$ is said to be in the class $M S^{*}(A, B)$ if

$$
-\frac{z f^{\prime}(z)}{f(z)}<\frac{1+A z}{1+B z}(z \in D(r)),
$$

where $-1 \leq B<A \leq 1$ and " $\phi<\mu$ " means that $\phi(D) \subseteq \mu(D)$. We have

$$
M S^{*}(1-2 \alpha,-1)=M S^{*}(\alpha)
$$

Kulkarni and Joshi[2] studied the class $\sum(\alpha, \beta, \gamma)$ of functions $f \in \Sigma$ satisfying the condition

$$
\left|\frac{\frac{z f^{\prime}(z)}{f(z)}+1}{2 \gamma\left(\frac{z f^{\prime}(z)}{f(z)}+\alpha\right)-\left(\frac{z f^{\prime}(z)}{f(z)}+1\right)}\right| \leq \beta(4)
$$

for

$$
(z \in D)\left(0 \leq \alpha<1 ; \quad 0<\beta \leq 1 ; \quad \frac{1}{2}<\gamma \leq 1\right)
$$

Σ is the class of functions in \widetilde{M} which are univalent in D.
In this paper we find sufficient conditions in terms of b_{n} 's in Theorems-1, 2 and 3 for some subclasses of $M S^{*}(\alpha), M S^{*}(\mathrm{~A}, \mathrm{~B})$ and $\sum(\alpha, \beta, \gamma)$ respectively.

SECTION-1

In this section we find a sufficient condition in Theorem-1 for the subclass of $\tau_{\eta}^{0} \cap$ $M S^{*}(\alpha)$.

Theorem-1:

If $f(z)=\frac{1}{z g(z)}=\frac{1}{z\left(1+\sum_{n=1}^{\infty} b_{n} z^{n}\right)} \in \tau_{\eta}^{0}$
for $D=\{z: 0<|z|<1\}$ with $f(z) \neq 0$ in D, $0<\alpha<1$ and $b_{n} \in \mathbb{C}$ for $n \in N$ satisfy
$\sum_{n=1}^{\infty}\left[\{n+(1-\alpha)\}\left|b_{n}\right|\right]<1-\alpha(5)$
then $f \in \tau_{\eta}^{0} \cap M S^{*}(\alpha)$.

Proof:

Let $f(z)=\frac{1}{z g(z)}$ where $g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$
with $b_{0}=1$ and $0<|z|<1$.
We have

$$
\begin{gathered}
f^{\prime}(z)=-\frac{g(z)+z g^{\prime}(z)}{\{z g(z)\}^{2}} \\
\frac{z f^{\prime}(z)}{f(z)}=-1-\frac{z g^{\prime}(z)}{g(z)} \\
\left|\frac{z f^{\prime}(z)}{f(z)}+1\right|=\left|-\frac{z \sum_{n=1}^{\infty} n b_{n} z^{n-1}}{\sum_{n=0}^{\infty} b_{n} z^{n}}\right| \\
\leq \frac{\sum_{n=1}^{\infty} n\left|b_{n}\right|}{1-\sum_{n=1}^{\infty}\left|b_{n}\right|} \\
<1-\alpha
\end{gathered}
$$

by the given condition (3).
Now the inequality (5) gives the required conclusion of the theorem.

Next we find a sufficient condition in Theorem-2 for the subclass of $\tau_{\eta}^{0} \cap M S^{*}(\mathrm{~A}, \mathrm{~B})$.

Theorem-2:

If $f(z)=\frac{1}{z g(z)}=\frac{1}{z\left(1+\sum_{n=1}^{\infty} b_{n} z^{n}\right)} \in \tau_{\eta}^{0}$
for $D=\{z: 0<|z|<1\}$ with $f(z) \neq 0$ in D,
$-1 \leq B<A \leq 1$ and $b_{n} \in \mathbb{C}$ for $n \in N$ satisfy
$\sum_{n=1}^{\infty}\left[\{n+n|B|+(A-B)\}\left|b_{n}\right|\right]<A-B(6)$
then $f \in \tau_{\eta}^{0} \cap M S^{*}(\mathrm{~A}, \mathrm{~B})$.

Proof:

Let $f(z)=\frac{1}{z g(z)}$ where $g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$ with $b_{0}=1$ and $0<|z|<1$.
We have

$$
\begin{aligned}
& f^{\prime}(z)=-\frac{g(z)+z g^{\prime}(z)}{\{z g(z)\}^{2}} \\
& -\frac{z f^{\prime}(z)}{f(z)}=1+\frac{z g^{\prime}(z)}{g(z)} \\
& =\frac{1+\operatorname{Aw(z)}}{1+B w(z)} \text { say. }
\end{aligned}
$$

We get

$$
\begin{aligned}
& w(z)=-\frac{z g^{\prime}(z)}{(B-A) g(z)+B z g^{\prime}(z)} \\
= & \frac{-\sum_{n=1}^{\infty} n b_{n} z^{n}}{(B-A) \sum_{n=0}^{\infty} b_{n} z^{n}+B \sum_{n=1}^{\infty} n b_{n} z^{n}}
\end{aligned}
$$

Hence

$$
|w(z)| \leq \frac{\sum_{n=1}^{\infty} n\left|b_{n}\right|}{|B-A|-\sum_{n=1}^{\infty}(A-B+n|B|)\left|b_{n}\right|}
$$

Now, this and the given condition (6) give that $|w(z)| \leq 1$.
Further $w(0)=0$. Thus
$-\frac{z f^{\prime}(z)}{f(z)}<\frac{1+A z}{1+B z}$.
Hence $f \in \tau_{\eta}^{0} \cap M S^{*}(\mathrm{~A}, \mathrm{~B})$.

Corollary: For $A=1-2 \alpha, B=-1$,
Theorem-2 gives Theorem-1.

SECTION-2

Here we find a sufficient condition in Theorem 3 for the class $\sum(\alpha, \beta, \gamma)$

Theorem-3:

If $f(z)=\frac{1}{z g(z)}=\frac{1}{z\left(1+\sum_{n=1}^{\infty} b_{n} z^{n}\right)}$ for $z \in D$ is in
Σ and $f(z) \neq 0$ in D with
$b_{n} \in \mathbb{C}$ for $n \in N$ and
$\left(0 \leq \alpha<1 ; 0<\beta \leq 1 ; \quad \frac{1}{2}<\gamma \leq 1\right)$ satisfy
$\sum_{n=1}^{\infty}[n(1+\beta(2 \gamma-1)+2 \gamma \beta(1-\alpha))]\left|b_{n}\right|$
$<2 \beta \gamma(1-\alpha)(7)$
then $f \in \sum(\alpha, \beta, \gamma)$.

Proof:

Let $f(z)=\frac{1}{z g(z)}$ where $g(z)=\sum_{n=0}^{\infty} b_{n} z^{n} \quad$ for $0<|z|<1$ with $b_{0}=1$.
We have
$-\frac{z f^{\prime}(z)}{f(z)}==1+\frac{z g^{\prime}(z)}{g(z)}$ for $z \in D$.
Further

$$
\begin{aligned}
& \quad\left|\frac{\frac{z f^{\prime}(z)}{f(z)}+1}{2 \gamma\left(\frac{z f^{\prime}(z)}{f(z)}+\alpha\right)-\left(\frac{z f^{\prime}(z)}{f(z)}+1\right)}\right| \\
& =\left|\frac{-\frac{z g^{\prime}(z)}{g(z)}}{2 \gamma\left(-1-\frac{z g^{\prime}(z)}{g(z)}+\alpha\right)+\frac{z g^{\prime}(z)}{g(z)}}\right| \\
& =\left|\frac{z g^{\prime}(z)}{2 \gamma\left[(\alpha-1) g(z)-z g^{\prime}(z)\right]+z g^{\prime}(z)}\right| \\
& =\left|\frac{\sum_{n=1}^{\infty} n b_{n} z^{n}}{2 \gamma\left[(\alpha-1) \sum_{n=0}^{\infty} b_{n} z^{n}-\sum_{n=1}^{\infty} n b_{n} z^{n}\right]+\sum_{n=1}^{\infty} n b_{n} z^{n}}\right| \\
& \quad=\frac{\sum_{n=1}^{\infty} n\left|b_{n}\right|}{\left|\sum_{n=0}^{\infty}[2 \gamma\{(\alpha-1)-n\}+n] b_{n} z^{n}\right|} \\
& \leq \frac{\sum_{n=1}^{\infty} n\left|b_{n}\right|}{2 \gamma(1-\alpha)-\sum_{n=1}^{\infty}|2 \gamma\{(\alpha-1)-n\}+n|\left|b_{n}\right|}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\sum_{n=1}^{\infty} n\left|b_{n}\right|}{2 \gamma(1-\alpha)-\sum_{n=1}^{\infty}\{2 \gamma(1-\alpha)+n(2 \gamma-1)\}\left|b_{n}\right|} \\
& \leq \beta \quad \text { by (7) } \quad \text { (8) }
\end{aligned}
$$

Thus (4) and (8) give that
$f \in \sum(\alpha, \beta, \gamma)$.

REFERENCES

[1]. Djiok. J; "Classes of Meromorphic functions defined by the Hadamard product", International Journal of Mathematics and Mathematical Sciences, Volume 2010, Article ID 302583, 11 pages.
[2]. Kulkarni. S.R. and Joshi. S.S. ; " On a subclass of Meromorphic univalent functions with positive coefficients", The Journal of the Indian Academy of Mathematics, Vol 24, No.1, pp.197-205, 2002.
[3]. Silverman. H; "Univalent functions with varying arguments", Houston Journal of Mathematics, Volume 7, No.2, pp. 283-287, 1981.

